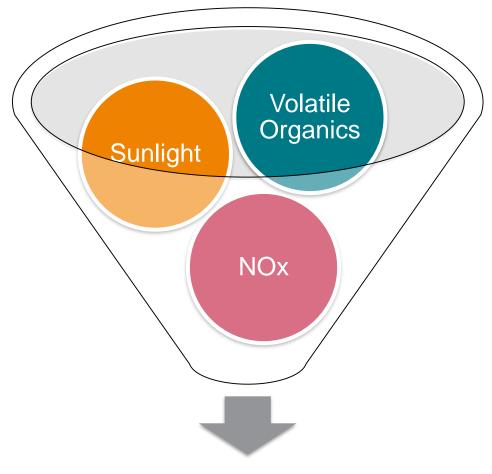


Vision for the Burner Industry 25 Years from Now

June 5, 2018


Travis F. Hardin HVACR & Controls Principal Engineer Manager

Market Drivers

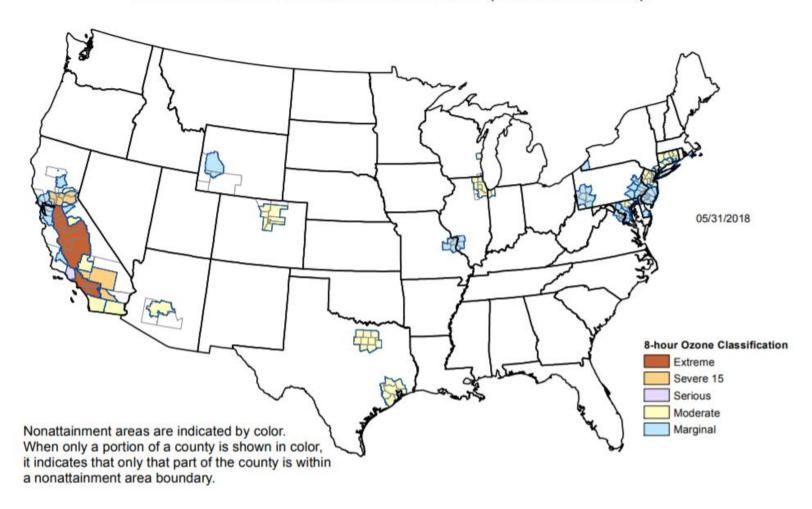
Why is NOx an Issue?

Ground Level Ozone (O₃)

US EPA Ozone Designation & Classifications (2008 Standard)

Designations – National Ambient Air Quality Standards

- Nonattainment
- > Attainment

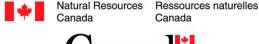

8 hour Ozone Classifications

- Extreme (0.175 ppm and above)
- > Severe 17
- > Severe 15
- Serious
- Moderate
- Marginal (begins at <u>0.076 ppm</u>)

USA Regulations and Current Conditions

8-Hour Ozone Nonattainment Areas (2008 Standard)

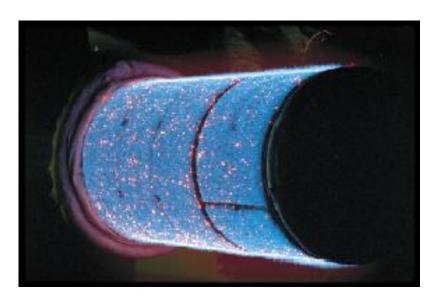
For the Ozone-8Hr (2008) St. Louis-St. Charles-Farmington, MO-IL nonattainment area, the Illinois portion was redesignated on March 1, 2018. The Missouri portion has not been redesignated.

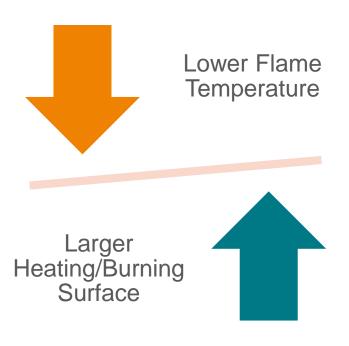

The entire area is not considered in maintenance until all states in a multi-state area are redesignated.

Efficiency

- > USA DOE
 - > Commercial Boilers

- > NRCan
 - > Amendment 15





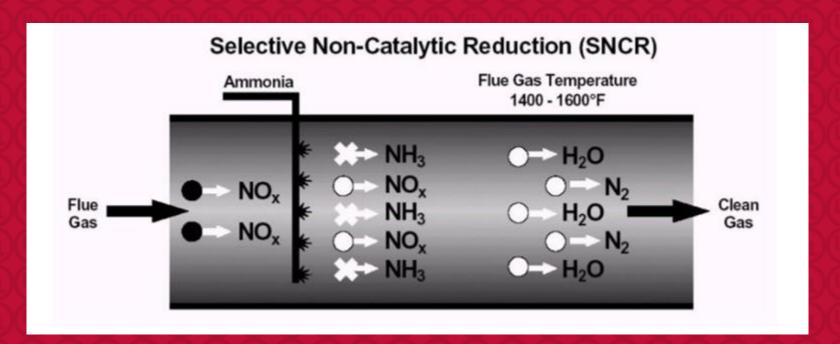
Current Burner Technology

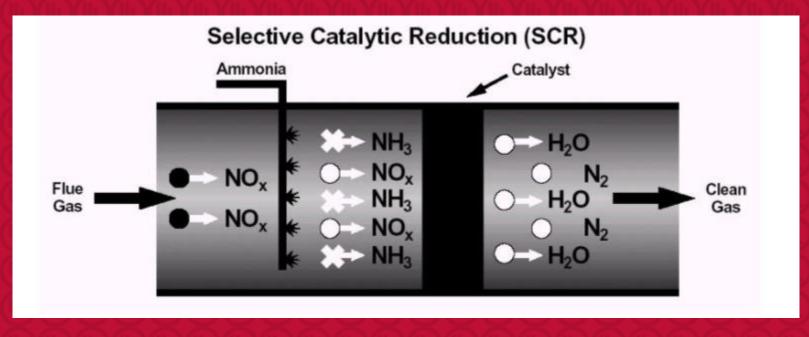
- Surface Combustion
 - Pre-mix
 - Ceramic Fiber
 - Increased maintenance
 - 6ppm
 - 1500 hp firetube

Current Burner Technology

- Staged Combustion
 - Staged injection of air
 - Low O₂ in primary combustion zone
 - Lower flame temps in secondary combustion zone
 - Flame impingement
 - Larger footprint
 - Can be difficult to retrofit

Design and Development


- > Hot Water
 - Surface Combustion (premix) burners within condensing boilers
 - Continue to improve technologies/costs/etc.
- > Steam
 - Surface Combustion (premix) burners
 - Improving mixing technology while maintaining safety/performance
 - Utilize gun-style burner designs
 - Low excess air & higher flame temperatures for better efficiency
 - > Treating NOx after the combustion process

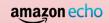


Design and Development

- > After combustion processing
 - > SNCR "Selective Non-Catalytic Reduction"
 - ➤ Operates in range of 1400° to 1600°F flue
 - SCR "Selective Catalytic Reduction"
 - ➤ Operates in range of 600° to 800° F flue
 - Ammonia injection (reagent)
 - Urea injection (reagent)
 - ➤ Positives: Non-hazardous, non-volatile, nonexplosive, non-flammable
 - Negatives: Less efficient than ammonia; Cold climate issues

Design and Development

- New Technologies & Designs in NOx control
 - > Ceramic filters & SCR combination
 - > Ease of retrofit
 - > Lower costs
 - > Etc.


IOT / Connected Technology

System Performance

Is it easy to set-up and use?

Do I perform as well as I say I do?

Interoperability (includes Connectivity)

Do I work with other devices?

Cyber Security & Privacy

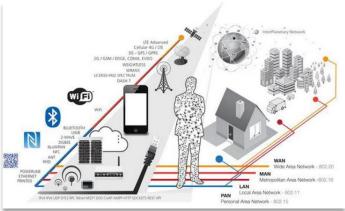
Can I be hacked and is my data secure?

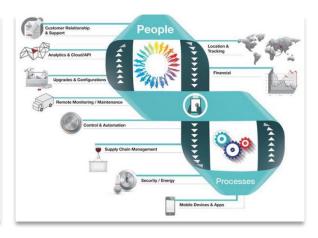
Functional Safety

Are my safety systems reliable?

System Reliability

Can I rely on the system functioning?


Software Upgrade Support



Connected technologies explained

Smart system and IoT are driven by:

Components

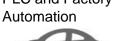
(sensors, controller, attuators..)

Connectivity

People & process

on actual use.

THE INTERACTION BETWEEN THESE ENTITIES ARE CREATING NEW TYPES OF SMART APPLICATIONS AND SERVICES



Network Connectable Products and Systems

Industrial

Automotive

Commercial

Consumer

Lighting

Smart Home

Medical Devices

How an Attack Works

95MALWARE120

Common Attack Mechanisms

- MALWARE
 - Viruses, Trojans, and Worms
 - Botnets
 - Ransomware
- **O2** ADVANCED PERSISTENT THREATS
 - Requires Resources
 - Specific Target
- DENIAL OF SERVICE (DoS)
 - Overwhelm System
 - Degrade Performance
- COMMON
 - Phishing
 - Brute Force
 - Back Door

Data Breaches

Data Breaches 66%

International Data Corporation (IDC) Research shows that 66% of networks will be breached by 2018

Unplanned Downtime

Loss of Production

Harm to Assets

Damage to Reputation

Guidance Documents

- ISO/IEC TR 15443
- ITU-T CYBEX 1500 series
 - CVE / NVD
 - CWE (CWRAF/CWSS, SANS CWE Top 25 / OWASP Top 10) and CAPEC
- ISO/IEC 27000 series
- ISO/IEC 15408
- ISO/IEC DIS 20243 /O-TTPS
- FISMA
- HIPAA
- IEC 62443

- IEC 80001
- PCI
- SANS 20 CSC
- Cyber Essentials (UK)
- Top 35 mitigation strategies (AU)
- NIST Cybersecurity Framework
 & SP 800-53r4 security controls
- DHS C³ VP & CRR
- SAE AS5553 & 6174

Key Product Development Cybersecurity

Challenges

Product Validation & Certification

30 billion

connected devices by 2020

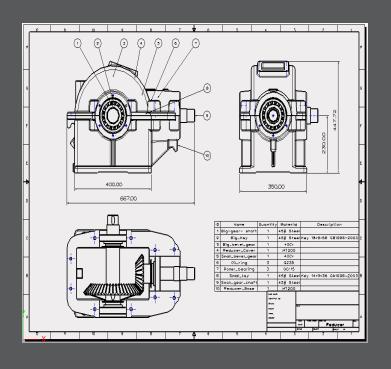
of IoT apps have security vulnerabilities

80% >94,000 2

known vulnerabilities

million

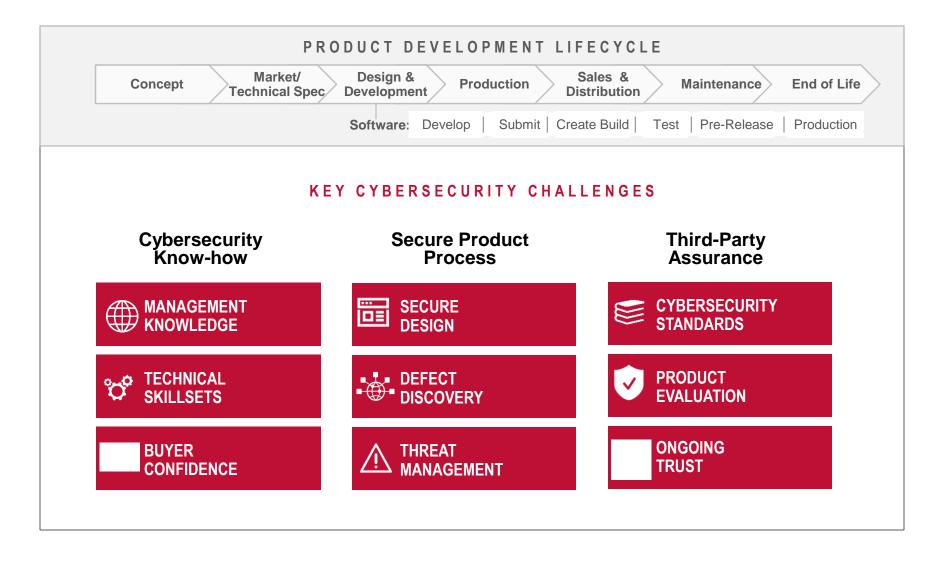
unfilled cybersecurity positions by 2019



Product Organization Skillset

Secure Product Process

Smart Products Have Two Bills of Materials


Hardware BILL OF MATERIALS (BOM)

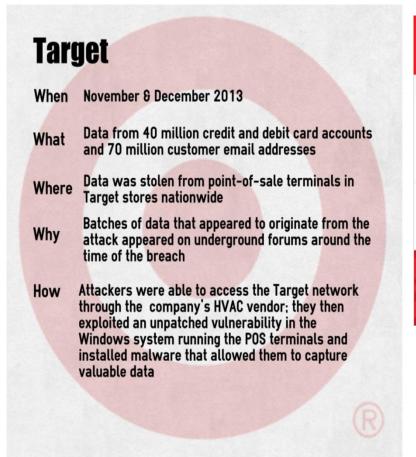
Software BILL OF MATERIALS (SBOM) **Customers** General Release Internal Internally Developed Internal Software **Developers** Commercially off-the-shelf Components Most known vulnerabilities External **Externally** Open-Source Components Developed Custom **Software**

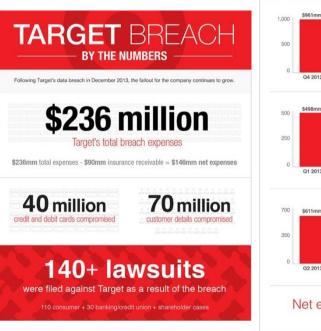
Manufacturers Face Cybersecurity Challenges Throughout the Product Lifecycle

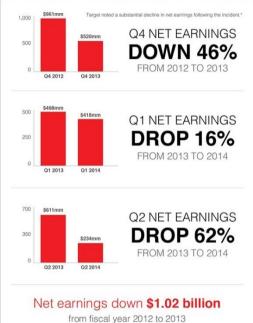
Cybersecurity Services

Vulnerabilities & Exploits

- Known Vulnerabilities Analysis All software binaries, including executables and libraries, in a product are
 assessed for known vulnerabilities at the time of evaluation. The vulnerabilities are identified from the NIST
 National Vulnerability Database (NVD).
- **Structured Penetration Testing** A mechanism of evaluation of a product to exploit vulnerabilities and weaknesses discovered in the vulnerability assessment phase.
- Malformed Input Testing (Fuzzing) A black box testing technique used to reveal software weaknesses and
 vulnerabilities in a product by triggering them with invalid or unexpected inputs on the external interfaces of the
 product. The product is evaluated for unexpected behavior based on the customer's specifications.


- Static Code Analysis Static analysis of all compiled executables and libraries of the product, in order to look for known weaknesses
- Static Binary and Byte Code Analysis Analysis of all compiled or intermediate binary executables and libraries of the product.
- Common Weakness Enumerations(CWE) The product shall not contain any software weakness identified from CWE/SANS Top 25 Most Dangerous Software Errors, CWE/SANS on the cusp list or OWASP Top 10 2013 web application software weaknesses.




- Access Control Review of authorization testing, a process of determining if a requester is allowed to receive
 a service of perform an operation
- Cryptography Validates data is stored and transmitted in a form that can only be processed by its intended audience.
- **Communications** Verifies the appropriate responses to random sets of logical information
- Software Update Support

Real World Example

Key Questions for Consideration

- 1. Do you embed IoT devices within the products that you develop?
- 2. What are the cybersecurity risks associated with the IoT devices embedded in your products?
- 3. What are the current and future challenges that you face in mitigating those risks?
- 4. What might you look to gain from an engagement with a cybersecurity expert?

Thank you

