Gas-air-ratio control technologies for high efficiency gas fired appliances

Tom Costello

## ebmpapst

The engineer's choice



#### **ebmpapst**

## Gas-air-ratio control technologies Overview

- Combustion system components
- Pneumatic gas-air-ratio control
- Electronic gas-air-ratio control (gas adaptive)
- Features and benefits
- Computer simulation

## Gas-air-ratio control technologies Combustion system components



### **ebmpapst**

## Pneumatic gas-air-ratio control

# Gas-air-ratio control technologies Pneumatic GARC system



## Gas-air-ratio control technologies Pneumatic GARC diagram



# Gas-air-ratio control technologies Components – Pneumatic GARC Assembly

#### **ebmpapst**

#### **Blower**

- Mixes Gas and Air
- Provides air-gas mixture to burner

#### Venturi

- Generates low pressure signal
- · Injects the gas into air









gas supplied

# Gas-air-ratio control technologies Components – Premix ready gas blower



#### Gas-air-ratio control technologies Components – Venturi

#### **ebmpapst**

#### Venturi for air-gas mixing control

- · Venturi integrated into the blower housing
- · Specific design for the operating points



#### **Custom or universal**





#### Gas-air-ratio control technologies Components – Venturi

#### **ebmpapst**



Multiple venturi inserts are possible to vary heat load

#### Gas-air-ratio control technologies Components – Zero pressure gas valve

#### **ebmpapst**



**Dual valve** 

Co-axial valve

#### Gas-air-ratio control technologies Components – Zero pressure gas valve



- 1. regulation of the gas flow
- 2. adjustment of the gas flow over range of load

# Gas-air-ratio control technologies Throttle and offset adjustment characteristics

#### ebmpapst



Burner load [%]

#### ebmpapst

#### Gas-air-ratio control technologies

# Electronic gas-air-ratio control [gas adaptive]

## Gas-air-ratio control technologies Principle of electronic GARC operation



- Well-defined characteristic curve for burner temperature vs. mass flow air (thermal load of burner) within a gas family for given  $\lambda$ 
  - T<sub>Burner</sub> = F (mass flow air)
- Ratio between mass flow air and thermal load of the burner is nearly constant within a gas family (NG) but different between gas families (NG vs. LPG)
- Mass flow air corresponding to heat demand is directly adjusted by a blower with an integrated mass flow sensor
- Gas flow is adjusted with an actuator valve so that T<sub>Burner</sub> assumes proper value; increase gas flow when burner temperature is too low or decrease gas flow when burner temperature is too high
- During start-up a known characteristic curve (stored) is used for opening of gas valve vs. mass flow of air at ignition.

## Gas-air-ratio control technologies Burner temperature vs. mass air flow



#### ebmpapst

Components – Burner with K-type thermocouples





# Gas-air-ratio control technologies Components – Electronic GARC Assembly





#### **ebmpapst**

## Gas-air-ratio control technologies

Components – LFE with mass air flow sensor



## Gas-air-ratio control technologies Electronic GARC diagram





| <b>Features</b> | and | benefits |  |
|-----------------|-----|----------|--|
|                 |     |          |  |

|                     | Electronic GARC (gas adaptive)                       | Pneumatic GARC                                                    |
|---------------------|------------------------------------------------------|-------------------------------------------------------------------|
| Heat<br>Demand      | Modulation range of 1:10                             | Modulation range of 1:5                                           |
| Altitude            | Heat output remains the same                         | Heat output is reduced                                            |
| Flue Pipe<br>Length | Heat output remains the same                         | Heat output is reduced                                            |
| Gas<br>pressure     | Constant Lambda value                                | Lambda value changes                                              |
| Gas<br>Quality      | Only one appliance type is necessary for NG and LPG. | Change of gas orifice and appliance adjustments may be necessary. |

## Gas-air-ratio control technologies Pneumatic vs. Electronic

#### **ebmpapst**

**Computer Simulation** 

### **ebmpapst**

## QUESTIONS?

### ebmpapst

#### THANK YOU!

#### **Contact person**

Tom Costello

Tom.costello@us.ebmpapst.com

Phone + 01-860-507-8135

ebm-papst Farmington, CT USA

100 Hyde Road Farmington, CT 06034



The engineer's choice