

High Performance Corrosion Protection for Commercial Stainless Steels

Presented to:

Matthew M. Seabaugh, Ph.D

Director

June 2, 2015

Overview of Presentation

- Nexceris Introduction
- Potential of Coating Technology
- Overlay Coatings
- Diffusion Coatings
- Emerging Technologies

COMPANY OVERVIEW

What We Do

How We Work with Customers

Need for Coating Technologies

Coatings Allow Better Materials Design:

- Alloy Selection to Meet Application-Critical Criteria
 - Mechanical Strength
 - Electrical Conductivity
 - Thermal Conductivity
 - Cost
- Surfaces are Tailored to Create Additional Value:
 - Corrosion Resistance
 - Catalytic Function
 - Electrical Function
 - Appearance

Coating Technologies

We Divide High Temp Coatings into Two Categories:

- Overlay Coatings
 - Metal or Ceramic Coating on Top of Substrate
 - Examples: Catalytic Reactors, Electrical Components
 - Plasma Spray
 - Physical or Chemical Vapor Phase Growth
 - Spray and Heat Treat
- Diffusion Coatings
 - Metal or Ceramic Coating Evolves From Support Alloy
 - Examples Aluminides, Carbides, Nitride Coatings
 - Vapor Phase/Vacuum Treatments
 - Plating and Heat Treat in Controlled Atmosphere
 - Atmospheric Spray and Heat Treat

TECHNOLOGY OVERVIEW

Overlay Protective Coatings

Process Characteristics

- Designed for ferritic stainless steel
- Reduces Cr volatility
- Electrical conductivity can be tailored
- Coatings for oxidizing and reducing atmospheres

After Deposition

After Deposition

Co Zr

352-27-03_2500x

MAG: 2500 x HV: 15.0 kV WD: 15.0 mm

Overlay Coatings on Complex Metal Surfaces

Overlap and Integration with Heterogeneous Catalysis

High Temperature Chemical Reactors

 VOC Oxidation for Stationary Industrial Systems and H₂ abatement systems for advanced Batteries

Fuel Reforming and SMR Reactors

11

How Are Overlay Coatings Applied?

Non-Protective Coatings

- Dip Coating
- Wash Coating

Protective Coats

- Spray Deposition
- Screen Printing

Overlay Protective Coatings

Dual MCO/Aluminide Coated Metallic Interconnect

Diffusion Coating Value Proposition

Uncoated 316 SS: extreme filamentous carbon growth

Coking resistance
100 h at 550 °C, carbon rich atmosphere
(33% H₂-30% CO₂-24.7% CO-12% CH₄)

Coated 316 SS: no carbon deposition

Oxidation Resistance

Coking Resistance

Other Features of Aluminide Technology:

- Increased Thermal Conductivity
- Enhanced Emissivity
- Improved Wear Resistance
- Simple, Low Cost Application

Lower Cost Austenitic Alloys in

- Heat Transfer
- Corrosion Resistance
- Carburization Resistance
- Sulfidation Resistance

Diffusion Protective Coatings

- Ferritic (441, 446, Crofer 22APU)
- Austenitic (316, 347H)
- Inconel (600, 601, 617)
- Nickel Alloy 200
- Copper Alloys

Phase Diagram of Alloys

Diffusion Coating on Stainless Steels

Cross-section SEM and Al compositional EDS map for Nexceris aluminide coating on Grade 304 stainless steel

Cross-section SEM of aluminide coating produced by CVD on Grade 304

B. A. Pint et al., Evaluation of Iron-Aluminide CVD Coatings for High Temperature Corrosion Protection, Materials at High Temperature 18(3) (2001) 1.

Diffusion Coatings on Superalloys

Cross-section SEM for Nexceris aluminide coating on Inconel 617

Cross-section SEM of Si modified aluminide coating produced by pack cementation on IN-738 LC

H. Arabi et al., Formation Mechanism of Silicon Modified Aluminide Coating on a Ni-Base Superalloy, Int. J. Eng. Sci., 19(5-1) (2008) 39.

Oxidation of Common Alloys

Aluminide coating successfully prevents spallation alloy scale during oxidation

Stainless Steel 430

Stainless Steel 304

t= 500 h

t = 0 t = 50 h

Coated Uncoated

Substrate: Alloy 304, 316 and 430; Aluminide coating: 20 µm fired Test Conditions: 900 °C, Humidified Air, Isothermal oxidation testing

Comparative Performance of Coated 430 vs Various Austenitic Steels

430 Alloy Achieving Corrosion Performance of 4X more expensive 310 Alloy

Propane Torch Stress Tests

Pass 1

Pass 7-10

Modifying Oxidation Behavior

•SS316 with Aluminide coating •500 hours in humidified air at 900 °C

Performance Comparison to Vapor Phase Coatings

NexTech's coating process successfully reproduces the diffusion based surface microstructure produced by more conventional aluminization processes

Vapor Phase Aluminization (VPA) Coating Microstructure on SS316

NexTech's Aluminide Coating Microstructure on SS316

Performance Comparison to Vapor Phase Coatings

Addressing Biomass Derived Contaminants 50h Exposure KCI containing air, 650 °C

How Does it Work?

Coating Application Methods

Also:

- Dip Coating
- Curtain Coating
- Brush Painting
- Transfer Printing

Aerosol

Deposition

Post Coating Rolling Operation (304 Stainless Steel)

SEM analysis (Rolled 304 Stainless Steel)

Rolling operation does not damage the aluminide coating

Rolled component: inside

Flat component (no forming)

397-152-04-О 1500x 20 µm

397-152-04-I_1500х 20 µm

397-152-05_1500x-2 20 µm

EMERGING APPLICATIONS

StratalystTM Product Thermal Management and Catalyst Support

Extending the Design Space

Single Dip Coating in Aluminum & Air Firing

Creates Immediate
 Opportunities in
 Burner Markets

The product:

Strata-Lyst Nickel Aluminide Catalyst Supports

Porous α -Al₂O₃ Topcoat

- Open, Interconnected Porosity for Infiltration
- Catalysts Infiltrated to Allow Lower Temp Combustion

Aluminide diffusion coating

- Oxidation resistance
- Enhanced IR Emssivity
- Good Thermal Conductivity

Nickel Skeleton

- Deformability
- Mechanical Robustness
- Lower Cost than Alloys (Mfg. Scale—NiMH Batteries)

Applications in Burners for Corrosion Resistant Foams

Conclusions

- Coatings can protect low-cost alloys in high temperature environments.
- Overlay coatings approaches offer broad chemical compositions and tailorable electrical and catalytic properties.
- Diffusion coatings offer excellent thermal stability, corrosion resistance and damage tolerance.
- Coatings can be applied by low-tech, easily scaled and adopted technologies with wide process tolerances.
- Technologies in development to create unique coated composites from a range of iron and nickel alloys.
- We are exploring other alloys for heat exchange applications.

For Further Information

Matthew M. Seabaugh, Ph.D.

Director

Nexceris

404 Enterprise Drive

Lewis Center, OH 43035

Phone: (614) 842-6606 extension 107

Email: matt@nexceris.com