Gas Appliance Modulating Controls Technology

ASGE Technical Conference

June 7, 2011

Mike Schultz

- Why modulate?
- Modulation range
- CO₂ curve
- Factors Impacting Modulation
- Gas Appliance Modulating Controls Technology
 - Gas modulation only
 - Gas / Air control
- Application Considerations
- Application Problems
- Advanced Systems

Why Modulate?

Load matching

- Comfort
 - Heat demand / heat loss
 - Equipment sized for coldest days cycles the rest of the time
 - Reduction in fan speed / air noise
- Multiple processes one burner
 - Combi Appliance
 - Central heat
 - Water heating

Increased system efficiency

- Air/fuel linkage
 - Heat exchanger performance
 - Efficiency gains at low fire Hx sized for max input
 - Energy savings Hx efficiency and cycling losses
 - Reduction in combustion products emissions

Why Modulate?

Increased system reliability

- Reduction in burner cycles
 - Reduce burner short cycling
 - Less thermal stress on system

Modulation Range

• How much turndown?

- **2:1**
 - 50% of full rate
 - 25% of full rate gas pressure
- 2.5:1
 - 40% full rate
 - 16% of full rate gas pressure
- 5:1
 - 20% full rate
 - 4% of full rate gas pressure
- 10:1
 - 10% full rate
 - 1% of full rate gas pressure

- Constant CO₂
- Increasing/Decreasing CO₂
- Gas modulation only
- Shaped

Modulation Range

Considerations

- Customer demand / expectations
 - Comfort
 - Performance
- System Cost
- Process
 - Air heating
 - Water heating
 - Central heat
 - Hot water
- Installation
 - Complexity of commissioning
 - Field support
 - Tools required

System components

- Fuel supply
 - Pressure
 - 4"WC
 - 7"WC
 - 14"WC
 - Quality
 - Consistent
 - Varying

- Burner Type

- Atmospheric
 - Minimum gas pressure
 - Maximum gas pressure
- Premix
 - Operating range input
 - Operating range CO₂

Factors Impacting Modulation

System components

- Heat Exchanger
 - Condensing
 - Non condensing
 - Bimodal
- Fan
 - + AC
 - + DC
 - Variable speed control
- Gas Valve
 - Minimum outlet pressure
 - Maximum supply pressure
 - Regulation range
 - Flow capacity
 - Accuracy

System components

- System Controls
 - Thermostats
 - On off
 - Communicating
 - Sensors
 - Supply temperature
 - Return temperature
 - Flue temperature
 - Flame safety
 - Ignition
 - Fan control
 - On/off
 - Modulating
 - Valve control
 - On/off
 - Modulating

Factors Impacting Modulation

Honeywell

Regulations

11

- Local requirements
- Agency approvals

Gas Appliance Modulating Controls Types

Honeywell

- Gas modulation only
 - Flow control valve
 - Modulating regulator
- Gas/Air control
 - Feedback Gas/Air control
 - Feed forward Gas/Air control

Gas only Modulation

Gas Only Modulation

- Flow control valve
 - Constant gas pressure
 - Adjust orifice/throttle

Gas Only Modulation

- Modulating regulator
 - Adjust gas pressure
 - Constant orifice/throttle

Amplified Gas/Air – Furnace Application

1:1 Gas/Air – Boiler / Water Heater Application

Amplified Gas/Air

Typical Amplified Gas/Air Modulating Performance

Honeywell

Amplified Gas/Air

- Gas (manifold) pressure is linked to combustion air pressure through a servo regulator system
- System pressure is amplified to obtain "normal" manifold pressures.

Amplified Gas/Air

- Manifold pressure is driven by pressure drop across heat exchanger (pressure signal normally applied to pressure switch)
- Simple solution for staging and modulation

Amplified Gas/Air with 4 amplifier

System with Low Pressure Switch

- Pneumatic linking of gas and air.
- Easy staging and modulation.
- Compatible with inshot burners.
- Compatible with existing Furnace Heat Exchangers
- Compatible with existing Inducers.
- Simple application in existing Central Furnaces
- Simple field replacement.

Load

- Tolerances on burne rpressure tight, especially at low pressures
- Modulation graph through zero
- •Limitation of max. burner pressure by gas valve not possible

Venturi

Delta Pair = HIGH AIR - LOW AIR

LOW AIR can be measured on gas pressure tap if gas valve is closed

Delta Pgas = GAS PRESSURE - REFERENCE PRESSURE (= LOW AIR)

- Optimization of efficiency
- Modulation with premix burner
- Increased reliability
- Reduction of combustion products emissions
- Omission of air pressure switch

Upstream Fan - 1:1 Gas/Air

Midstream

Downstream

- Fan performance
- Regulator accuracy
- Valve capacity
- Gas quality tolerances
- LP (oscillation)
- Noise production

Application Procedure

- Determination of nominal CO₂
- Determination of control settings:
 - Offset
 - Orifice / throttle
- Measurement of static performance with gas/air control

Application Procedure

- Accuracy tests:
 - Tapping
 - Ambient temperature
 - Inlet pressure
 - Hysteresis
- Accuracy tests: performance at gas valve tolerances
- Ignition performance tests
- Determination of optimum start input rate
- Step response test

- Ignition problems
- Insufficient input rate (air pressure too low)
- Minimum gas pressure too low (measure delta P!)
- Deviations from ideal CO₂ characteristic

Ignition Problems

Causes

- insufficient mixing of gas and air
- incorrect CO₂-%
- Moisture
- igniter position not correct
- sensitive burner

•Remedies:

- -improved mixing
- -ignition at different input rate
- -hot surface ignition or intermittent pilot
- -optimize igniter position
- -increased spark energy

- Air signal is never too high!
- Reasons:
 - -effect on regulation accuracy
 - -effect on mixing conditions (CO emission)
 - -effect on modulation band (minimum point is fixed)
 - -lower fan speed possible (noise reduction)

Advanced Systems

Conclusion

Honeywell

- Thank you!
- Questions?